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Abstract

In the present investigation on the dynamic plastic buckling of cylindrical shells under axial compression waves, the
critical axial stress and the exponential parameter of inertia terms in stability equations are treated as a couple of
characteristic parameters. The criterion of transformation and conservation of energy in the process of buckling ini-
tiation is used to derive the supplementary restraint equation of buckling deformation at the fronts of axial elastic and
plastic compression waves. The supplementary restraint equation, stability equations, boundary conditions and con-
tinuity conditions constitute the necessary and sufficient conditions of determining the two characteristic parameters.
Two characteristic equations are derived for the two characteristic parameters. The critical axial stress or the critical
buckling time, the exponential parameter of inertia terms and the initial modes of buckling deformation are calculated
quantitatively from the solution of the characteristic equations.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The subject of dynamic buckling of cylindrical shells under axial impulsive loading has been studied by
many investigators (Coppa and Nash, 1962; Roth and Klosner, 1964; Budiansky and Hutchinson, 1964;
Hutchinson and Budiansky, 1966; Lindberg and Herbert, 1966; Goodier, 1967; Florence and Goodier,
1968; Tamura and Babcock, 1975; Fisher and Bert, 1973; Zimcik and Tennyson, 1980; Lindberg and
Florence, 1983; Jones, 1989; Simitses, 1990; Lepik, 1999; Karagiozova and Jonse, 2000). The effect of stress
wave propagation and the effect of inertia have important influences on the initiation of dynamic buckling.
Some features of dynamic buckling distinct from the corresponding static buckling, for example, the lo-
calization of dynamic buckling deformation and the occurrence of higher deformation modes, are related to
the effect of stress wave propagation and the effect of inertia. Lepik (1999) investigated the dynamic plastic
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buckling of cylindrical shells under axial impact by use of quasi-bifurcation method (Lee, 1977), with the
effect of stress wave taken into account. In the paper of Karagiozova and Jonse (2000), particular attention
was paid to the influence of stress wave propagation on the initiation of buckling by use of the numerical
simulation of discrete model.

In the two works done by authors of this paper (Wang and Tian, 2002a,b), attempts were made at
determining quantitatively inertial effect in the process of buckling initiation for columns subjected to an
axial step-load. The critical axial stress and the exponential parameter of inertia terms in stability equations
were treated as a couple of characteristic parameters. The criterion of transformation and conservation of
energy in the transient process of buckling was presented to derive the supplementary restraint equation
of determining the two characteristic parameters. The method may be known as the twin-characteristic-
parameter analysis of dynamic buckling problems.

In this paper, we present the twin-characteristic-parameter analysis of dynamic plastic buckling for
cylindrical shells under elastic—plastic compression waves caused by an axial impact. The analysis will be
focused on the calculation of the critical axial stress (or critical buckling time), the exponential parameter of
inertia, and the initial modes of dynamic buckling deformation. The post-buckling problem is not included
in the present analysis.

The analysis is confined to the axisymmetrical deformation modes of cylindrical shells. This restriction is
suitable for the cylindrical shell with small radius-to-thickness ratio.

2. Axial compression waves and stability equations for cylindrical shells

As shown in Fig. 1(a), we consider the cylindrical shell of length L*, radius R and thickness 4. It is
assumed that the shell is made of linear strain-hardening material with the density p. The relation between
stress and strain for linear strain-hardening material is shown in Fig. 1(b), where E is Young’s modulus and
E, denotes the hardening modulus.

At the instant 7, = 0, an axial compressive force of magnitude N, is suddenly applied at the end A of the
shell, where N, denotes the force intensity along the circumference of the shell end. The compressive force
may result from axial impact against a rigid wall by the shell with an attached mass or impact against the
stationary shell by a traveling mass G. We use ¢; to denote the axial compressive stress ¢; caused at the
impact end when the impact begins. In this paper, we consider the case where the value of ¢ is higher than
the yield stress of the shell material, that is

Ny =ah, o >0 (2.1a,b)

At the beginning of impact, the elastic compression wave and plastic compression wave resulting from the
impact start propagating from the impact end toward the remote end at the velocities ¢y and ¢;, respec-
tively.

In this paper, our investigation is confined to the dynamic buckling that occurs at the first two stages of
the wave propagation, as shown in the following. In order to avoid the discussion of unloading problem, we
assume that the loading duration of the force N; is longer than or equal to the period of the two stages.

2.1. Stresses in the unbuckled shell at the first stage of compression-wave propagation

The first stage of compression-wave propagation begins at the instant #, = 0 when the impact is initiated,
and ends at the instant when the elastic wave front arrives at the fixed end for the first time. At this stage,
the characteristics representing the position of compression wave fronts and the axial force in the shell are
plotted in Fig. 1(c) for the shell made of linear strain-hardening material. At any instant ¢ before the elastic
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Fig. 1. (a) Cylindrical shell geometry. (b) Relation between stress and strain for linear strain-hardening material. (c) Initial elastic and
plastic stress waves in the shell. (d) Initial wave and reflected wave in the shell.

wave front arrives at the fixed end and is reflected, the distances that the elastic and plastic waves travel
from the impact end are, respectively,

L=cot, Li=cqt (Z‘gL*/C()) (2.23., b)

The region 0 <x < L, is the plastic wave region, and the region L; < x <L is the elastic wave region.

For simplicity, we assume that the pre-buckling deformation of the shell may be determined with suf-
ficient accuracy by membrane theory. The stresses in the unbuckled shell are written as

oy =—01, o) =—a, agg = af,%)) =0 (2.3a—<)

In Egs. (2.3), the superscripts 1 and 2 are corresponding to the plastic wave region and the elastic wave
region, respectively. The force intensities in the unbuckled shell are denoted by NX((’) and Nég) = 0 for the two
regions. With ui’o) denoting the axial displacement and w(()') denoting the displacement normal to the middle
surface, the motion equations of the unbuckled shell are written as
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E,uxo =y, (0<x<Ly), Eul puif)?n (Li <x<L) (2.4a,b)

X0, x0,xx

From the solution of Egs. (2.4a,b), the values of the elastic wave velocity ¢, and the plastic wave velocity ¢,
are calculated. The axial strain of the middle surface of the unbuckled shell is expressed as

1 1 N o

1 1 2 s

) = (E —E)os —gp O<w<iy, 2 =—= (L<x<l) (2.5a,b)
If the amplitude of the stress JS)) is large enough, the dynamic buckling of the shell will take place at this
stage.

2.2. Stresses in the unbuckled shell at the second stage of compression-wave propagation

The second stage of compression-wave propagation begins at the instant when the elastic wave front
arrives at the fixed end and is reflected from the fixed end for the first time. The stage ends at the instant
when the reflected wave front meets with the forward plastic wave Ny . At this stage, the plastic wave has
not reached the fixed end. According to the theory of one-dimensional stress waves (Wang Lili, 1985), the
stress in the region between the reflected wave front and the reflection end is calculated by use of the
following formula:

0((3)) = 705(1 + \/m) (2.6)

Consequently, the reflected wave is a plastic compression wave. At this stage, the characteristics repre-
senting the position of the fronts of the forward wave and the reflected wave, and the axial force in the shell
are plotted in Fig. 1(d). The reflected wave travels towards the impact end at the speed ¢;, and meets with
the forward plastic wave N; at the instant ¢ = #3.

3 = L(Co + C1)/(2C()Cl) (27)
At this stage, we denote the axial length of the shell by L instead of L*.

2.3. Dynamic-bifurcation equations obtained by use of the adjacent-equilibrium criterion

We assume that the buckling occurs with axisymmetric deformation modes for the shell under the action
of elastic and plastic compression waves. At the initial stage of buckling occurrence, the dlsplacements of
the middle surface have the infinitesimal increments ( il), )) for the reg1on 0 < x <L and (u xl W ) for
the region L; < x < L. Correspondmg to the displacement 1ncrements u ) and W1 , the increments of the in-
plane forces are N and NH1 , and the moment intensity on c1rcumferent1al cross-section is denoted by M,.
After buckling, the total displacements are written as
u® = ul) +ul) W =Wl W, i=1,2 (2.8a,b)

The displacements (uf(&wg)) and (1, w) correspond to two adjacent-equilibrium configurations. From
the theory of thick shells (Tessler et al., 1995) we derive the following governing equations for the axi-
symmetric dynamic buckling by use of the adjacent-equilibrium criterion similar to that in the static in-
stability theory (Brush and Almroth, 1975).

0 1 0 (i), () Ny
N - ph xl tl 12 R 91 St Mx,xx + (Nx() WLx) . - 7

N 1 .
- ph (Wg)n + E Euxl,xtt + Ehzel,xn) ) 1= 17 2 (2.937 b)
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In Egs. (2.9a,b), 0, denotes the cross-section rotation in the axial direction. For simplification, let us
estimate the magnitude order of the terms at the right side of Egs. (2.9a,b).

1 K 1 W 1 K 1 #
01 = O(Wl,x)7 ﬁ Eeut = O<E I_RWI,n)a E Euxl,xtt = O<12 IR Uy tt>

2
f—zhzem _ o< 12 - ) (2.10a-d)
In Egs. (2.10a—d), / denotes the variation length of the variables u; and w; along the axial direction of the
shell, and is half as large as the length of buckling half-wave. From the numerical results of calculation, the
variation length / is approximately of the same order of magnitude as the radius R. At the right side of Eq.
(2.9b), the ratio of the second or third term to the first term is of the magnitude order 4?/(12R?), ap-
proximately. Therefore, the second and third terms may be omitted in comparison with the first term in the
following analysis. For the same reason, the second term at the right side of Eq. (2.9a) is also omitted. With
the above-mentioned simplification, Eqgs. (2.9a,b) are rewritten as

_ . N .
N, = oty MO+ (NGwil) === phl),, = 1,2 (2.11a,b)

3. Fundamental equations derived by use of deformation theory
In the following, we will transform Eq. (2.11) into the form expressed by the buckling displacements w§>
and u, ) according to the deformation theory of plasticity.
Assuming that the cross-section of the shell remams plane at the initial stage of buckling deformation,
we write the expressions of the strain increments e| o ) and eé,1 as follows:
(i)
0 — 0 () 0 — 0 0 _ 0 _ M
=&, —ZW ., & = U, €y =& =—— 3.1a—c
x1 1 W x1 1x 01 0T Ry ( )
where 8 ) and 801 represent the buckling strains of the middle surface.
We assume that no strain-rate reversal occurs at the initial stage of buckling deformation. Under this
assumption, there is no unloading zone in the shell. The relations between the stress increments and the
strain increments derived by use of deformation theory of plasticity (Wang Ren et al., 1998) are written as

follows:
EY 2E0 p 4ED (1
1> = (Et 3 ) +T <)7 ‘75)1) ] (ebf Ee)(d)) (3.2a,b)
In Egs. (3.2a,b), E{V denotes the secant modulus and is calculated according to the following equation:
1 1 I 1\osh
Y - 33
EY E (Et E ) N; (33)
By integration, we obtain
_ hj2 W E® .
MO = D142 )zdzm = (B 55 34
x /h/2 Oy1 +R zdz 12 T+ 3 Wl,xx ( )

_ h2 EO) 2 ()
N)f?/h/zai’l)(lJr%)dzz <E,+ ; >h )+ 5! )h% (3.5)
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(@ _ ) 30 ~ i w1 (@)
Noi —[ “eleNgEg)h(T"‘z Uy (3.6)

Introducing Eq. (3.5) into Eq. (2.11a) gives

EDN o 2E9
<E,+ - )u” i) = pul), (3.7)

3 1xx 3R 1x = pu

In the axial direction, the following boundary conditions and continuity conditions are employed for the
shell impacted against a rigid wall.

gl)(ovt) =0, N)SIZ)(La t) =0, (38371’))

WV (et 1) = P (cit,1), NP (eyt,t) = NS (ert, 1) (3.9a,b)

From the numerical results of investigation on dynamic elastic buckling (Wang and Tian, 2002a,b), it
has been found that the influence of the axial inertia effect is small. With omitting the axial inertia term at
the right side of Eq. (3.7), by integration we obtain

; 2E0 wid

ul) = e (3.10)

Ey’ + 3E,
With introducing Egs. (3.4), (3.6) and (3.10), we re-write Eq. (2.11b) as
C;

D<)Wlxxxx+]vl lrx R_Wl phwlttfo (311)
. 3 ED AE

DY) = h (E, + ) C = _ Ak (3.12a,b)
12 3 1+ 3E,/EY

In this paper, we consider two types of radial boundary conditions at the shell ends. The first type of
radial boundary conditions is assumed to be that transverse force and cross-section rotation at one end or
both ends of the shell are equal to zero, and is written as follows:

wih =0, Dw{\ +Nw, =0 (3.13a,b)

For the second type of radial boundary conditions, we assume that the shell is simply supported at one end
or both ends. The boundary conditions are written as

w’ =0, w, =0 (3.14a,b)

When the dynamic buckling occurs at the first stage of the compression-wave propagation, the portion
of the shell before the front of the elastic compression wave remains undisturbed. The restraint conditions
at the elastic wave front x* = ¢yt are written as

wi (eot,1) =0, wi(cot, 1) =0 (3.152,b)

1x

The continuity conditions at the front of the plastic compression wave are written in the forms:

w (e, 1) = wi (ert, 1), wgg(cln t) = w@(clt, 1),
DOy ;x(c tt) = D(2>w§2)2x(clt 1), (3.16a—d)
D I)W(l)

1xxx

(c1t, 1) +N1wlx(clt t) = Df)w(2>

1 xxx

(cit,t) + Naw'i(cit, t)



A. Wang, W. Tian | International Journal of Solids and Structures 40 (2003) 3157-3175 3163

4. Transformation and conservation of energy in process of buckling and supplementary restraint equation at
compression wave fronts
We write Eq. (3.11) into the form:

Wi+ 2wl + w4 92w, =0 (4.1)

In Eq. (4.1), the parameters o;, {/; and y, are respectively defined as

Ci 5 ph
i V=T
D'R? D

N;
2 4 2
4= Vi

(4.2a—c)

In many cases for dynamically loaded cylindrical shells, experimental results have shown that at the
initial stage of buckling occurrence, the waveform remains in a fixed position and merely grows in am-
plitude with time (Lindberg and Florence, 1983). For this reason, the buckling displacement wi’) may be
written into the variable-separated form as follows:

w (x,t) = T(1)Y(x) (4.3)
Substituting Eq. (4.3) into Eq. (4.1), we obtain the following equations:
T—ar=0, ¥"(x)+oqY(x) +&jYi(x) =0, @& =y;+y74 =12 (4.4a-c)

In Egs. (4.4), dots and primes denote differentiation with respect to the time variable ¢ and the axial
coordinate x respectively, and A is the undetermined parameter that is named the inertial characteristic
parameter. '

When the dynamic buckling occurs, the buckling deflection wgl) increases with the time variable z. In this
case, for the solution of Eq. (4.4a) we have

A=w*>0, T =be”™ (4.5a,b)

In Eq. (4.5b), ¢, denotes the critical buckling time and 4 is an infinitesimal integration constant.

For the problem under consideration, there are two characteristic parameters o, and @ = v/A that need
to be determined. For the two parameters, only one characteristic equation is derived from the condition on
which the governing equation (4.4b) has a nontrivial solution satisfying the boundary conditions (3.13)—
(3.15) and the continuity conditions Eq. (3.16). We have to find the supplementary condition of determining
the two characteristic parameters.

We introduce the following denotations:

A =0, x=xP =c1, L =cy (4.6a-c)

With multiplying both sides of Egs. (2.11b) by wgi) and integrating it by parts, we derive the following
equation:
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We introduce the following expressions:

2 1 x:‘) N2
"> (5 [ () dx>

i=1 lo

) (i 0
1 T G up G
o= 5 () s [ ) (4sac)
1 Mo

The axial strain corresponding to the buckling deflection w(li) is

i 1 ¢
8)(:1) = EW)(CI)‘VX (4.9)

With the expressions (4.8a—c) introduced, Eq. (4.7) is written as
Urel = Ubuc + Kw (410)

In Egs. (4.8a—c), U, represents the decreased compressive-deformation energy in the shell, related to the
buckling displacement wﬁ"), Upye denotes the buckling deformation energy and K, is the buckling kinetic
energy corresponding to the velocity wﬁ”. Eq. (4.10) expresses the transformation and conservation of
energy in the transient process of buckling initiation, and may be used as the critical condition of dynamic
buckling.

Differentiating both sides of Eq. (4.10) with respect to the time variable ¢, we obtain the second critical

condition of dynamic buckling:
Urel = Ubuc + Kw (411)

Eq. (4.11) may be interpreted as the conservation of the energy transformation rate in the process of the
dynamic buckling. The critical condition (4.10) and (4.11) constitute the criterion of the dynamic instability
for the cylindrical shell under the action of axial compressive waves.

For the dynamic buckling caused by the axial compression wave traveling at the first stage as shown in
Fig. 1(c), introducing Eqgs. (4.8a—) into Eq. (4.11) gives the following supplementary restraint equation of
buckling deformations at the fronts of compression waves:

ci(N1 — Ns)

(2)

Y”(Cot) ==
: C()Ds

Y;(c1t) (4.12)

The selection of the signs ‘+’ at the right side of Eq. (4.12) should ensure that the values of both sides of the
equation have the same sign.

For the dynamic buckling at the instant # = #; when the forward plastic wave meets the reflected plastic
wave, as shown in Fig. 1(d), the supplementary restraint equation obtained from the critical condition
(4.11) is

Y{(Clt3) = Yzl(Clt3) =0 (413)

Eq. (4.4b), the boundary conditions (3.13)—(3.15), the continuity conditions (3.16) and the supplementary
restraint equation (4.12) or (4.13) constitute the necessary and sufficient conditions of determining the
solution of the buckling problem.
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5. Solution for two characteristic parameters and buckling modes
5.1. Solutions of Eq. (4.4b) for buckling at the first stage of compression-wave propagation

For the dynamic buckling at the first stage of compression-wave propagation as shown in Fig. 1(c), the
conditions of determining the solution of Eq. (4.4b) consist of the boundary conditions (3.13) or (3.14) at
the impact end, the restraint conditions (3.15) at the elastic wave front, the continuity conditions (3.16) at
the front of plastic wave, and the supplementary restraint equation (4.12). By investigation, it is found
that only for the case o > 2@, and 2@, > o3, Eq. (4.4b) have the nontrivial solution satisfying the res-
traint conditions as mentioned above. The expressions of the solution are written in the following
forms:

Y1 (x) = Dy cos(fx) + Dy sin(f,x) + D; cos(f,x) + Dy sin(f,x) (5.1)
Ya2(x) = ch({1x)[d) cos($rx) + dy sin({ox)] + sh({x)[ds cos({ax) + dy sin({px)] (5.2)

In Egs. (5.1) and (5.2), D; and d; (i = 1, 2, 3, 4) are integration constants. The parameters f§; and ¢; (i = 1, 2)
are defined as

B\/% ot 40, /3\/% EEER] (5.30.b)
of =B+ B @ =\Yi+7%i=Bp, (5:4,b)

1 - 1 - - -
G = 5V 20, — 03, (= 5V 20, + 3, V%(wg - W;) = y%(a)? - lﬁ) (5.5a,b,¢)

From Eq. (5.4b), the expression of the inertial exponential parameter w is written as
w 1 (E EV\/, .,
B Y (el — 5.6
coh \l 12 <E " 3E (a7 - i) (56)

5.2. Solutions of Eq. (4.4b) for buckling at the second stage of compression-wave propagation

At the instant ¢ = t3, as shown in Fig. 1(d), the plastic wave traveling forward from the impact end meets
the reflected plastic wave traveling backward from the reflecting end. For the dynamic buckling occurring
at the instant ¢ = #;, the conditions of determining the solution of Eq. (4.4b) consist of the boundary
conditions (3.13) or (3.14) at both ends of the shell, the continuity conditions (3.16) and the supplementary
restraint condition (4.13) at the plastic wave front.

For Egs. (4.4b), the expression of the solution ¥;(x) is the same as Eq. (5.1), and ¥,(x) is of the same form
as Y (x) and written as

Y>(x) = dj cos(&,x) + dy sin(&1x) + ds cos(Erx) + dy sin(&sx) (5.7)

= \/; EEREREC ﬂ EERERr (5.8a.b)

G=C+8, m=E8E (5.9a,b)
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5.3. Equations for the two characteristic parameters

Introducing the expressions (5.1) and (5.2) or the expressions (5.1) and (5.7) into the boundary condi-
tions, continuity conditions and supplementary restraint equation as mentioned above, we obtain nine
linear algebraic equations for the eight constants D; and d; (i =1, 2, 3, 4). From the conditions of the
existence of nontrivial solution for these equations, we derive the two characteristic equations for the
parameters f§; and f5, as follows:

Fl(ﬁl,ﬁz,k,i’[):(), FZ(ﬁlaﬁZakvn):O (Sloaab)

where the parameters 8, and f8, are related to the characteristic parameters o and w = V7. according to
Egs. (5.3a,b) and (5.6). The parameters k and # are defined as

k=0l /oy, n=ct/(L-al) (5.11a,b)

After the values of the parameters §; and 3, are obtained from Egs. (5.10a,b), the critical-load parameter o}
and the inertial characteristic parameter A or w are calculated by use of Egs. (5.4a,b) and (5.6). Dynamic
buckling modes are calculated by use of Egs. (5.1) and (5.2) or (5.7).

6. Numerical results

By use of the theoretical method developed in Sections 1-5, we have investigated the axisymmetric
dynamic plastic buckling of three specimens in the experimental investigation reported by Florence and
Goodier (1968), which were investigated by Lepik (1999). In the experiment, specimens attached a large
rigid mass at one end were impacted against a rigid wall at another end. The serial numbers of the three
specimens are 1, 17 and 23 respectively, in the paper of Florence and Goodier (1968).

The specimens were made of aluminum-alloy 6061-T6. In our calculation, the elastic and hardening
moduli of the specimen material are taken as £ = 68.5 GPa and E, = 0.02E respectively, which are the same
as those in the paper of Lepik (1999). The yield stress of the material is taken as g, = 290 MPa, which is
approximately equal to the mean value of the yield stresses given in the papers of Florence and Goodier
(1968) and Lepik (1999). The geometrical parameters and experimental impact velocities of the three
specimens, given in the paper of Florence and Goodier (1968), are listed in Table 1.

6.1. Dynamic buckling at the first stage of compression-wave propagation

The first stage of axial-compression-wave propagation in shells has been defined in Section 2.1, as shown
in Fig. 1(c). From calculation, it is found that the initial buckling deformation occurs at this stage when the
impact velocities are equal to the values given in Table 1.

In calculation, we consider the two types of boundary conditions at the impact end, which are defined by
Egs. (3.13a,b) and (3.14a,b) respectively. The boundary conditions Eq. (3.13a,b) are corresponding to the
case of zero rotation and zero transverse force at the impact end, that is, the case where in the process of

Table 1

Geometrical sizes and experimental impact velocities for the three models in the paper of Florence and Goodier (1968)
Model no. Thickness 4 (in.) Radius R (in.) Length L (in.) Experimental impact velocity v, (ft/s)
1 0.095 0.5 3 332
17 0.100 0.5 4 395

23 0.095 0.5 6 310
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impact, the shell’s edge remains normal to the rigid wall and there is no friction between the rigid wall and
the impact end of the shell. In the following, the boundary conditions (3.13a,b) are simply written as ZRZF
boundary. At the first stage of wave propagation, Egs. (3.14a,b) denotes the boundary conditions of simple
support at the impact end, which is simply written as SS boundary.

For the boundary ZRZF, two types of buckling deformation modes are obtained from calculation. With
the impact velocities given in Table 1, the two types of buckling modes for the specimens 1 and 17 are
plotted in Figs. 2-5. In Figs. 2-5, ¢,. denotes the critical buckling time, and L., = ¢yt denotes the distance
that the elastic compression wave travels from the impact end at the instant ¢ = ¢,. In the figures, g, denotes
the axial compression stress in the plastic wave region and oy is the yield stress. Corresponding to the
impact velocities given in Table 1, the values of the ratio o1/, are respectively 1.694, 1.825 and 1.620 for
the specimens 1, 17 and 23. Assuming that the buckling occurs at the instant ¢ = #; = L/c¢y, the first type of
buckling modes for the specimens 17 and 23 are plotted in Figs. 6 and 7, respectively. For this case, the
critical length L., is equal to the axial length of the shell. For the buckling at this instant, the values of the
ratio g, /o are calculated and given in the figures, and the axial half-wave numbers of the buckling modes
are 8, 11 and 16 for the three specimens, respectively.

The variation of the critical buckling time 7., with the values of the ratio o, /0y is illustrated in Figs. 8 and
9 for the two types of buckling modes. From Figs. 8 and 9, it is obvious that the critical buckling time ¢,
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Fig. 2. The first mode of the specimen 1 at the first stage for the boundary condition of zero rotation and zero transverse force at
the impact end.
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Fig. 3. The second mode of the specimen 1 at the first stage for the boundary condition of zero rotation and zero transverse force at
the impact end.
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Fig. 5. The second mode of the specimen 17 at the first stage for the boundary condition of zero rotation and zero transverse force
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Fig. 6. The first mode of specimen 17 for the boundary condition of zero rotation and zero transverse force at the impact end when
buckling occurs at the final instant of the first stage.

decreases with the increment of the stress ratio o;/g;. The critical buckling time corresponding to the
second mode is longer than that for the first mode. Therefore, the dynamic buckling will occur with the first
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Fig. 7. The first mode of specimen 23 for the boundary condition of zero rotation and zero transverse force at the impact end when
buckling occurs at the final instant of the first stage.
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Fig. 10. The value of characteristic parameter « corresponding to the first buckling mode under the boundary condition of zero
rotation and zero transverse force at the impact end (4 = 2.41 mm).
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Fig. 11. The value of characteristic parameter w corresponding to the first buckling mode under the boundary conditions of zero
rotation and zero transverse force at the impact end, for different thickness of shells.

mode. The variation of the values of the inertial exponential parameter w with ratio o, /oy is illustrated in
Figs. 10 and 11 for the first type of buckling modes. From Figs. 10 and 11, it can be seen that the value of
the parameter w increases with the increment of the stress ratio o /as.

For the boundary conditions of simple support (SS) at the impact end, the two types of buckling modes
are also obtained from calculation. Corresponding to the impact velocities given in Table 1, the two types of
buckling modes for the specimens 1 are plotted in Figs. 12 and 13. For the buckling that occurs at the
instant ¢ = t; = L/cy, the axial half-wave numbers of the buckling modes are given in Table 2 for the three
specimens, and the first type of buckling modes for the specimens 17 and 23 is shown in Figs. 14 and 15,
respectively. The variation of the critical buckling time f., with the ratio o;/0s is shown in Fig. 16. The
variation of the inertial exponential parameter w with ratio o, /g is plotted in Fig. 17. The comparisons of
the critical buckling time and the inertial exponential parameter corresponding to the two types of
boundary conditions are also give in Figs. 16 and 17. From Fig. 16, it can be seen that the values of the
critical buckling time ¢, are close to each other for the two types of boundary conditions. The axial half-



A. Wang, W. Tian | International Journal of Solids and Structures 40 (2003) 3157-3175 3171

0,/61.694,t,=13.58ms,
L =67.79mm

-0.200-00 . 0.60 0.80 1.00

-0.60

Fig. 12. The first mode of the specimen 1 at the first stage for the boundary conditions of simple support at the impact end.
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Fig. 13. The second mode of the specimen 1 at the first stage for the boundary conditions of simple support at the impact end.

Table 2
The comparison of axial buckling half-wave numbers m for the three specimens
Model no. Experiment®  The present solution Solution of Solution of
Buckling at instant ¢ = ¢ Buckling at instant ¢t = 3 Florer.lce and  Lepik (1999)
Goodier
ZRZF boundary SS boundary ZRZF boundary SS boundary (1968)
1 8 8 8 8 8 10 10
17 11 11 11 11 13 13 13
23 15 16 16 15 18 21 19

#The experimental results from the paper of Florence and Goodier (1968).

wave numbers of the buckling modes for the SS boundary conditions are the same as those for the ZRZF
boundary conditions.

6.2. Dynamic buckling at the second stage of compression-wave propagation

The second stage of the compression-wave propagation has been defined in Section 2.2. For this stage of
the compression-wave propagation, by use of the solution developed in Sections 1-5 we investigate the
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Fig. 14. The first mode of the specimen 17 for the boundary conditions of simple support at the impact end when buckling occurs at

the final instant of the first stage.
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Fig. 15. The first mode of the specimen 23 for the boundary conditions of simple support at the impact end when buckling occurs at

the final instant of the first stage.
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Fig. 16. Comparison of Critical buckling times #.. for ZRZF and SS boundary conditions at the impact end (4 = 2.41 mm).
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Fig. 17. The comparison of the characteristic parameter w corresponding to the half-wave number m = 8, for the two types of
boundary conditions at the impact end (4 = 2.41 mm).
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Fig. 18. The buckling mode of the specimen 1 at the instant ¢ = #; of the second stage for the boundary condition of simple support at

both ends (g, = 1.430y).
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Fig. 19. The buckling mode of the specimen 17 at the instant ¢ = #; of the second stage for the boundary condition of simple support at
both ends (g, = 1.460).



3174 A. Wang, W. Tian | International Journal of Solids and Structures 40 (2003) 3157-3175

1.00
0.80

0.60

040 |

020 |

0.00

-0.200.00 o.% % 0. 80 1,00
040 |

-0.60 i} xIL

W/Wipax

-0.80
-1.00

Fig. 20. The buckling mode of the specimen 17 at the instant ¢ = #; of the second stage for the boundary condition of zero rotation and
zero transverse force at both ends (o, = 1.360;).
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Fig. 21. The buckling mode of the specimen 23 at the instant # = #; of the second stage for the boundary condition of zero rotation and
zero transverse force at both ends (6 = 1.330y).

dynamic buckling of the three specimens, which occurs at the instant ¢ = #;. The value of #; is given by Eq.
(2.7). At the instant ¢ = 3, the reflected wave front meets with the forward plastic wave Ny, as shown in Fig.
1(d). Under the two types of restraint conditions ZRZF and SS at both ends of shells, the lowest stress ratio
a1/ 0, that causes dynamic buckling and the corresponding deformation modes are calculated and shown in
Figs. 18-21 for the three specimens. The axial half-wave numbers of the buckling modes are listed in Table
2. For the higher values of the stress ratio o /g, more axial half-wave numbers are obtained.

7. Conclusion

The axial critical stress and the exponential parameter of inertia terms in stability equations are treated
as a couple of characteristic parameters in the present investigation on the plastic dynamic buckling of
cylindrical shells under axial impact. The criterion of transformation and conservation of energy in the
process of buckling initiation is used to derive the supplementary restraint equation of buckling defor-
mation at the fronts of axial compression waves. A couple of characteristic equations for the two char-
acteristic are derived from the conditions on which the stability equations have nontrivial solutions
satisfying the boundary conditions, continuity conditions and the supplementary restraint equation. The
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critical axial stress or the critical buckling time, and the exponential parameter of inertia are quantitatively
calculated from the solutions of the characteristic equations.

When the axial stress resulting from impact is high, the initial buckling deformation of shells occurs in
the region close to the impact end at the initial stage of compression-wave propagation. As the value of the
stress ratio g)/gs increases, the critical buckling time #, decreases and the value of the characteristic
parameter o increases. When the axial stress resulting from impact is low, the initial buckling deformation
of the shell may occur in the entire region of shells at the second stage of compression-wave propagation.
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