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Abstract

In the present investigation on the dynamic plastic buckling of cylindrical shells under axial compression waves, the

critical axial stress and the exponential parameter of inertia terms in stability equations are treated as a couple of

characteristic parameters. The criterion of transformation and conservation of energy in the process of buckling ini-

tiation is used to derive the supplementary restraint equation of buckling deformation at the fronts of axial elastic and

plastic compression waves. The supplementary restraint equation, stability equations, boundary conditions and con-

tinuity conditions constitute the necessary and sufficient conditions of determining the two characteristic parameters.

Two characteristic equations are derived for the two characteristic parameters. The critical axial stress or the critical

buckling time, the exponential parameter of inertia terms and the initial modes of buckling deformation are calculated

quantitatively from the solution of the characteristic equations.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The subject of dynamic buckling of cylindrical shells under axial impulsive loading has been studied by
many investigators (Coppa and Nash, 1962; Roth and Klosner, 1964; Budiansky and Hutchinson, 1964;

Hutchinson and Budiansky, 1966; Lindberg and Herbert, 1966; Goodier, 1967; Florence and Goodier,

1968; Tamura and Babcock, 1975; Fisher and Bert, 1973; Zimcik and Tennyson, 1980; Lindberg and

Florence, 1983; Jones, 1989; Simitses, 1990; Lepik, 1999; Karagiozova and Jonse, 2000). The effect of stress

wave propagation and the effect of inertia have important influences on the initiation of dynamic buckling.

Some features of dynamic buckling distinct from the corresponding static buckling, for example, the lo-

calization of dynamic buckling deformation and the occurrence of higher deformation modes, are related to

the effect of stress wave propagation and the effect of inertia. Lepik (1999) investigated the dynamic plastic

International Journal of Solids and Structures 40 (2003) 3157–3175

www.elsevier.com/locate/ijsolstr

* Corresponding author.

E-mail address: wtng4509@public.wh.hb.cn (A. Wang).

0020-7683/03/$ - see front matter � 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0020-7683(03)00051-9

mail to: wtng4509@public.wh.hb.cn


buckling of cylindrical shells under axial impact by use of quasi-bifurcation method (Lee, 1977), with the

effect of stress wave taken into account. In the paper of Karagiozova and Jonse (2000), particular attention

was paid to the influence of stress wave propagation on the initiation of buckling by use of the numerical

simulation of discrete model.
In the two works done by authors of this paper (Wang and Tian, 2002a,b), attempts were made at

determining quantitatively inertial effect in the process of buckling initiation for columns subjected to an

axial step-load. The critical axial stress and the exponential parameter of inertia terms in stability equations

were treated as a couple of characteristic parameters. The criterion of transformation and conservation of

energy in the transient process of buckling was presented to derive the supplementary restraint equation

of determining the two characteristic parameters. The method may be known as the twin-characteristic-

parameter analysis of dynamic buckling problems.

In this paper, we present the twin-characteristic-parameter analysis of dynamic plastic buckling for
cylindrical shells under elastic–plastic compression waves caused by an axial impact. The analysis will be

focused on the calculation of the critical axial stress (or critical buckling time), the exponential parameter of

inertia, and the initial modes of dynamic buckling deformation. The post-buckling problem is not included

in the present analysis.

The analysis is confined to the axisymmetrical deformation modes of cylindrical shells. This restriction is

suitable for the cylindrical shell with small radius-to-thickness ratio.

2. Axial compression waves and stability equations for cylindrical shells

As shown in Fig. 1(a), we consider the cylindrical shell of length L�, radius R and thickness h. It is
assumed that the shell is made of linear strain-hardening material with the density q. The relation between

stress and strain for linear strain-hardening material is shown in Fig. 1(b), where E is Young�s modulus and

Et denotes the hardening modulus.
At the instant t0 ¼ 0, an axial compressive force of magnitude N1 is suddenly applied at the end A of the

shell, where N1 denotes the force intensity along the circumference of the shell end. The compressive force

may result from axial impact against a rigid wall by the shell with an attached mass or impact against the

stationary shell by a traveling mass G. We use r1 to denote the axial compressive stress r1 caused at the

impact end when the impact begins. In this paper, we consider the case where the value of r1 is higher than

the yield stress of the shell material, that is

N1 ¼ r1h; r1 > rs ð2:1a; bÞ

At the beginning of impact, the elastic compression wave and plastic compression wave resulting from the

impact start propagating from the impact end toward the remote end at the velocities c0 and c1, respec-
tively.

In this paper, our investigation is confined to the dynamic buckling that occurs at the first two stages of

the wave propagation, as shown in the following. In order to avoid the discussion of unloading problem, we
assume that the loading duration of the force N1 is longer than or equal to the period of the two stages.

2.1. Stresses in the unbuckled shell at the first stage of compression-wave propagation

The first stage of compression-wave propagation begins at the instant t0 ¼ 0 when the impact is initiated,

and ends at the instant when the elastic wave front arrives at the fixed end for the first time. At this stage,

the characteristics representing the position of compression wave fronts and the axial force in the shell are
plotted in Fig. 1(c) for the shell made of linear strain-hardening material. At any instant t before the elastic

3158 A. Wang, W. Tian / International Journal of Solids and Structures 40 (2003) 3157–3175



wave front arrives at the fixed end and is reflected, the distances that the elastic and plastic waves travel

from the impact end are, respectively,

L ¼ c0t; L1 ¼ c1t ðt6 L�=c0Þ ð2:2a; bÞ

The region 06 x < L1 is the plastic wave region, and the region L1 < x6L is the elastic wave region.

For simplicity, we assume that the pre-buckling deformation of the shell may be determined with suf-

ficient accuracy by membrane theory. The stresses in the unbuckled shell are written as

rð1Þ
x0 ¼ �r1; rð2Þ

x0 ¼ �rs; rð1Þ
h0 ¼ rð2Þ

h0 ¼ 0 ð2:3a–cÞ

In Eqs. (2.3), the superscripts 1 and 2 are corresponding to the plastic wave region and the elastic wave

region, respectively. The force intensities in the unbuckled shell are denoted by N ðiÞ
x0 and N ðiÞ

h0 ¼ 0 for the two

regions. With uðiÞx0 denoting the axial displacement and wðiÞ
0 denoting the displacement normal to the middle

surface, the motion equations of the unbuckled shell are written as

z ,w σ

Et
N1

εεεεs E

L*
ε

(b)(a)

t                       t

tcx 1= t = t 3 tcx 1= ( ) *
0

*
1 / LtcLcx +−=
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tcx 0= t= t1 tcx 0=

N1 x

σ   σ   σ   σ   tcL 0= N1 x

x t=t2 σx 0 0 0 0
(1)(1)(1)(1)        σ                    x 0 0 0 0

(2) = - σσσσ        σ            x 0 0 0 0
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Fig. 1. (a) Cylindrical shell geometry. (b) Relation between stress and strain for linear strain-hardening material. (c) Initial elastic and

plastic stress waves in the shell. (d) Initial wave and reflected wave in the shell.
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Etu
ð1Þ
x0;xx ¼ quð1Þx0;tt ð06 x < L1Þ; Euð2Þx0;xx ¼ quð2Þx0;tt ðL1 < x < LÞ ð2:4a; bÞ

From the solution of Eqs. (2.4a,b), the values of the elastic wave velocity c0 and the plastic wave velocity c1
are calculated. The axial strain of the middle surface of the unbuckled shell is expressed as

eð1Þx0 ¼ 1

Et

�
� 1

E

�
rs �

N1

Eth
ð06 x < L1Þ; eð2Þx0 ¼ � rs

E
ðL1 < x < LÞ ð2:5a; bÞ

If the amplitude of the stress rð1Þ
x0 is large enough, the dynamic buckling of the shell will take place at this

stage.

2.2. Stresses in the unbuckled shell at the second stage of compression-wave propagation

The second stage of compression-wave propagation begins at the instant when the elastic wave front

arrives at the fixed end and is reflected from the fixed end for the first time. The stage ends at the instant

when the reflected wave front meets with the forward plastic wave N1 . At this stage, the plastic wave has

not reached the fixed end. According to the theory of one-dimensional stress waves (Wang Lili, 1985), the
stress in the region between the reflected wave front and the reflection end is calculated by use of the

following formula:

rð3Þ
x0 ¼ �rs 1

�
þ

ffiffiffiffiffiffiffiffiffiffi
Et=E

p �
ð2:6Þ

Consequently, the reflected wave is a plastic compression wave. At this stage, the characteristics repre-

senting the position of the fronts of the forward wave and the reflected wave, and the axial force in the shell

are plotted in Fig. 1(d). The reflected wave travels towards the impact end at the speed c1, and meets with

the forward plastic wave N1 at the instant t ¼ t3.

t3 ¼ Lðc0 þ c1Þ=ð2c0c1Þ ð2:7Þ
At this stage, we denote the axial length of the shell by L instead of L�.

2.3. Dynamic-bifurcation equations obtained by use of the adjacent-equilibrium criterion

We assume that the buckling occurs with axisymmetric deformation modes for the shell under the action
of elastic and plastic compression waves. At the initial stage of buckling occurrence, the displacements of

the middle surface have the infinitesimal increments ðuð1Þx1 ;w
ð1Þ
1 Þ for the region 06 x < L1 and ðuð2Þx1 ;w

ð2Þ
1 Þ for

the region L1 < x < L. Corresponding to the displacement increments uðiÞx1 and wðiÞ
1 , the increments of the in-

plane forces are N ðiÞ
x1 and N ðiÞ

h1 , and the moment intensity on circumferential cross-section is denoted by Mx.

After buckling, the total displacements are written as

uðiÞx ¼ uðiÞx0 þ uðiÞx1 ; wðiÞ ¼ wðiÞ
0 þ wðiÞ

1 ; i ¼ 1; 2 ð2:8a; bÞ
The displacements ðuðiÞx0 ;w

ðiÞ
0 Þ and ðuðiÞx ;wðiÞÞ correspond to two adjacent-equilibrium configurations. From

the theory of thick shells (Tessler et al., 1995) we derive the following governing equations for the axi-

symmetric dynamic buckling by use of the adjacent-equilibrium criterion similar to that in the static in-

stability theory (Brush and Almroth, 1975).

N ðiÞ
x1;x ¼ qh uðiÞx1;tt

�
þ 1

12

h2

R
h1;tt

�
; M ðiÞ

x;xx þ N ðiÞ
x0 w

ðiÞ
1;x

� �
;x
� N ðiÞ

h1

R

¼ qh wðiÞ
1;tt

�
þ 1

12

h2

R
ux1;xtt þ

1

12
h2h1;xtt

�
; i ¼ 1; 2 ð2:9a; bÞ
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In Eqs. (2.9a,b), h1 denotes the cross-section rotation in the axial direction. For simplification, let us

estimate the magnitude order of the terms at the right side of Eqs. (2.9a,b).

h1 ¼ Oðw1;xÞ;
1

12

h2

R
h1;tt ¼ O

1

12

h2

lR
w1;tt

� �
;

1

12

h2

R
ux1;xtt ¼ O

1

12

h2

lR
ux1;tt

� �
;

1

12
h2h1;xtt ¼ O

h2

12l2
w1;tt

� �
ð2:10a–dÞ

In Eqs. (2.10a–d), l denotes the variation length of the variables u1 and w1 along the axial direction of the

shell, and is half as large as the length of buckling half-wave. From the numerical results of calculation, the

variation length l is approximately of the same order of magnitude as the radius R. At the right side of Eq.

(2.9b), the ratio of the second or third term to the first term is of the magnitude order h2=ð12R2Þ, ap-
proximately. Therefore, the second and third terms may be omitted in comparison with the first term in the
following analysis. For the same reason, the second term at the right side of Eq. (2.9a) is also omitted. With

the above-mentioned simplification, Eqs. (2.9a,b) are rewritten as

N ðiÞ
x1;x ¼ qhuðiÞx1;tt; M ðiÞ

x;xx þ N ðiÞ
x0 w

ðiÞ
1;x

� �
;x
� N ðiÞ

h1

R
¼ qhwðiÞ

1;tt; i ¼ 1; 2 ð2:11a; bÞ

3. Fundamental equations derived by use of deformation theory

In the following, we will transform Eq. (2.11) into the form expressed by the buckling displacements wðiÞ
1

and uðiÞ1 according to the deformation theory of plasticity.

Assuming that the cross-section of the shell remains plane at the initial stage of buckling deformation,

we write the expressions of the strain increments eðiÞx1 and eðiÞh1 as follows:

eðiÞx1 ¼ eðiÞx1 � zwðiÞ
1;xx; eðiÞx1 ¼ uðiÞ1;x; eðiÞh1 ¼ eðiÞh1 ¼

wðiÞ
1

Rþ z
ð3:1a–cÞ

where eðiÞx1 and eðiÞh1 represent the buckling strains of the middle surface.

We assume that no strain-rate reversal occurs at the initial stage of buckling deformation. Under this

assumption, there is no unloading zone in the shell. The relations between the stress increments and the

strain increments derived by use of deformation theory of plasticity (Wang Ren et al., 1998) are written as

follows:

rðiÞ
x1 ¼ Et

�
þ EðiÞ

s

3

�
eðiÞx1 þ

2EðiÞ
s

3
eðiÞh1 ; rðiÞ

h1 ¼
4EðiÞ

s

3
eðiÞh1

�
þ 1

2
eðiÞx1

�
ð3:2a; bÞ

In Eqs. (3.2a,b), EðiÞ
s denotes the secant modulus and is calculated according to the following equation:

1

EðiÞ
s

¼ 1

Et
� 1

Et

�
� 1

E

�
rsh
Ni

ð3:3Þ

By integration, we obtain

M ðiÞ
x ¼

Z h=2

�h=2
rðiÞ
x1 1
�

þ z
R

�
zdz � � h3

12
Et

�
þ EðiÞ

s

3

�
wðiÞ

1;xx ð3:4Þ

N ðiÞ
x1 ¼

Z h=2

�h=2
rðiÞ
x1 1
�

þ z
R

�
dz � Et

�
þ EðiÞ

s

3

�
huðiÞ1;x þ

2

3
EðiÞ
s h

wðiÞ
1

R
ð3:5Þ
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N ðiÞ
h1 ¼

Z h=2

�h=2
rðiÞ

h1 dz �
4

3
EðiÞ
s h

wðiÞ
1

R

 
þ 1

2
uðiÞ1;x

!
ð3:6Þ

Introducing Eq. (3.5) into Eq. (2.11a) gives

Et

�
þ EðiÞ

s

3

�
uðiÞ1;xx þ

2EðiÞ
s

3R
wðiÞ

1;x ¼ quðiÞ1;tt ð3:7Þ

In the axial direction, the following boundary conditions and continuity conditions are employed for the

shell impacted against a rigid wall.

uð1Þ1 ð0; tÞ ¼ 0; N ð2Þ
x1 ðL; tÞ ¼ 0; ð3:8a; bÞ

uð1Þ1 ðc1t; tÞ ¼ uð2Þ1 ðc1t; tÞ; N ð1Þ
x1 ðc1t; tÞ ¼ N ð2Þ

x1 ðc1t; tÞ ð3:9a; bÞ
From the numerical results of investigation on dynamic elastic buckling (Wang and Tian, 2002a,b), it

has been found that the influence of the axial inertia effect is small. With omitting the axial inertia term at

the right side of Eq. (3.7), by integration we obtain

uðiÞ1;x ¼ � 2EðiÞ
s

EðiÞ
s þ 3Et

wðiÞ
1

R
ð3:10Þ

With introducing Eqs. (3.4), (3.6) and (3.10), we re-write Eq. (2.11b) as

DðiÞ
s wðiÞ

1;xxxx þ Niw
ðiÞ
1;xx þ

Ci

R2
wðiÞ

1 þ qhwðiÞ
1;tt ¼ 0 ð3:11Þ

DðiÞ
s ¼ h3

12
Et

�
þ EðiÞ

s

3

�
; Ci ¼

4Eth

1þ 3Et=E
ðiÞ
s

ð3:12a; bÞ

In this paper, we consider two types of radial boundary conditions at the shell ends. The first type of

radial boundary conditions is assumed to be that transverse force and cross-section rotation at one end or

both ends of the shell are equal to zero, and is written as follows:

wðiÞ
1;x ¼ 0; DwðiÞ

1;xxx þ Niw
ðiÞ
1;x ¼ 0 ð3:13a; bÞ

For the second type of radial boundary conditions, we assume that the shell is simply supported at one end

or both ends. The boundary conditions are written as

wðiÞ
1 ¼ 0; wðiÞ

1;xx ¼ 0 ð3:14a; bÞ

When the dynamic buckling occurs at the first stage of the compression-wave propagation, the portion

of the shell before the front of the elastic compression wave remains undisturbed. The restraint conditions

at the elastic wave front x� ¼ c0t are written as

wð2Þ
1 ðc0t; tÞ ¼ 0; wð2Þ

1;xðc0t; tÞ ¼ 0 ð3:15a; bÞ

The continuity conditions at the front of the plastic compression wave are written in the forms:

wð1Þ
1 ðc1t; tÞ ¼ wð2Þ

1 ðc1t; tÞ; wð1Þ
1;xðc1t; tÞ ¼ wð2Þ

1;xðc1t; tÞ;

Dð1Þ
s wð1Þ

1;xxðc1t; tÞ ¼ Dð2Þ
s wð2Þ

1;xxðc1t; tÞ;

Dð1Þ
s wð1Þ

1;xxxðc1t; tÞ þ N1w
ð1Þ
1;xðc1t; tÞ ¼ Dð2Þ

s wð2Þ
1;xxxðc1t; tÞ þ N2w

ð2Þ
1;xðc1t; tÞ

ð3:16a–dÞ
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4. Transformation and conservation of energy in process of buckling and supplementary restraint equation at

compression wave fronts

We write Eq. (3.11) into the form:

wðiÞ
1;xxxx þ a2

i w
ðiÞ
1;xx þ w2

i w
ðiÞ
1 þ c2i w

ðiÞ
1;tt ¼ 0 ð4:1Þ

In Eq. (4.1), the parameters ai, wi and ci are respectively defined as

a2
i ¼

Ni

DðiÞ
s

; w2
i ¼

Ci

DðiÞ
s R2

; c2i ¼
qh

DðiÞ
s

ð4:2a–cÞ

In many cases for dynamically loaded cylindrical shells, experimental results have shown that at the

initial stage of buckling occurrence, the waveform remains in a fixed position and merely grows in am-

plitude with time (Lindberg and Florence, 1983). For this reason, the buckling displacement wðiÞ
1 may be

written into the variable-separated form as follows:

wðiÞ
1 ðx; tÞ ¼ T ðtÞYiðxÞ ð4:3Þ

Substituting Eq. (4.3) into Eq. (4.1), we obtain the following equations:

€TT � kT ¼ 0; Y 0000
i ðxÞ þ a2

i Y
00
i ðxÞ þ ~xx2

i YiðxÞ ¼ 0; ~xx2
i ¼ w2

i þ c2i k; i ¼ 1; 2 ð4:4a–cÞ

In Eqs. (4.4), dots and primes denote differentiation with respect to the time variable t and the axial

coordinate x respectively, and k is the undetermined parameter that is named the inertial characteristic

parameter.

When the dynamic buckling occurs, the buckling deflection wðiÞ
1 increases with the time variable t. In this

case, for the solution of Eq. (4.4a) we have

k ¼ x2 > 0; T ¼ bexðt�tcrÞ ð4:5a; bÞ

In Eq. (4.5b), tcr denotes the critical buckling time and b is an infinitesimal integration constant.

For the problem under consideration, there are two characteristic parameters a1 and x ¼
ffiffiffi
k

p
that need

to be determined. For the two parameters, only one characteristic equation is derived from the condition on

which the governing equation (4.4b) has a nontrivial solution satisfying the boundary conditions (3.13)–

(3.15) and the continuity conditions Eq. (3.16). We have to find the supplementary condition of determining

the two characteristic parameters.

We introduce the following denotations:

xð1Þlo ¼ 0; xð1Þup ¼ xð2Þlo ¼ c1t; Lð2Þ
up ¼ c0t ð4:6a–cÞ

With multiplying both sides of Eqs. (2.11b) by wðiÞ
1 and integrating it by parts, we derive the following

equation:

X2
i¼1

Z xðiÞup

xðiÞ
lo

M ðiÞ
x;xx

"
þ N ðiÞ

x0 w
ðiÞ
1;x

� �
;x
� N ðiÞ

h1

R
� qhwðiÞ

1;tt

#
wðiÞ

1 dx

¼
X2
i¼1

Z xðiÞup

xðiÞ
lo

M ðiÞ
x wðiÞ

1;xx dx

(
þ
Z xðiÞup

xðiÞ
lo

Ni wðiÞ
1;x

� �2
dx�

Z xðiÞup

xðiÞ
lo

N ðiÞ
h1 eðiÞh1 dx� qh

Z xðiÞup

xðiÞ
lo

wðiÞ
1;t

� �2
dx

)
¼ 0 ð4:7Þ
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We introduce the following expressions:

Urel ¼
X2
i¼1

1

2

Z xðiÞup

xðiÞ
lo

Ni wðiÞ
1;x

� �2
dx

 !

Ubuc ¼
X2
i¼1

1

2

Z xðiÞup

xðiÞ
lo

N ðiÞ
h1 eðiÞh1 dx

 
�
Z xðiÞup

xðiÞ
lo

M ðiÞ
x wðiÞ

1;xx dx

!

Kw ¼
X2
i¼1

1

2
qh
Z xðiÞup

xðiÞ
lo

ðwðiÞ
1;tÞ

2
dx

 !
ð4:8a–cÞ

The axial strain corresponding to the buckling deflection wðiÞ
1 is

~eeðiÞx1 ¼ 1

2
wðiÞ

x1;x ð4:9Þ

With the expressions (4.8a–c) introduced, Eq. (4.7) is written as

Urel ¼ Ubuc þ Kw ð4:10Þ

In Eqs. (4.8a–c), Urel represents the decreased compressive-deformation energy in the shell, related to the

buckling displacement wðiÞ
1 , Ubuc denotes the buckling deformation energy and Kw is the buckling kinetic

energy corresponding to the velocity _wwðiÞ
1 . Eq. (4.10) expresses the transformation and conservation of

energy in the transient process of buckling initiation, and may be used as the critical condition of dynamic
buckling.

Differentiating both sides of Eq. (4.10) with respect to the time variable t, we obtain the second critical

condition of dynamic buckling:

_UUrel ¼ _UUbuc þ _KKw ð4:11Þ

Eq. (4.11) may be interpreted as the conservation of the energy transformation rate in the process of the
dynamic buckling. The critical condition (4.10) and (4.11) constitute the criterion of the dynamic instability

for the cylindrical shell under the action of axial compressive waves.

For the dynamic buckling caused by the axial compression wave traveling at the first stage as shown in

Fig. 1(c), introducing Eqs. (4.8a–c) into Eq. (4.11) gives the following supplementary restraint equation of

buckling deformations at the fronts of compression waves:

Y 00
2 ðc0tÞ ¼ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ðN1 � N2Þ

c0D
ð2Þ
s

s
Y 0
2ðc1tÞ ð4:12Þ

The selection of the signs �
� at the right side of Eq. (4.12) should ensure that the values of both sides of the

equation have the same sign.

For the dynamic buckling at the instant t ¼ t3 when the forward plastic wave meets the reflected plastic

wave, as shown in Fig. 1(d), the supplementary restraint equation obtained from the critical condition
(4.11) is

Y 0
1ðc1t3Þ ¼ Y 0

2ðc1t3Þ ¼ 0 ð4:13Þ

Eq. (4.4b), the boundary conditions (3.13)–(3.15), the continuity conditions (3.16) and the supplementary

restraint equation (4.12) or (4.13) constitute the necessary and sufficient conditions of determining the
solution of the buckling problem.
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5. Solution for two characteristic parameters and buckling modes

5.1. Solutions of Eq. (4.4b) for buckling at the first stage of compression-wave propagation

For the dynamic buckling at the first stage of compression-wave propagation as shown in Fig. 1(c), the

conditions of determining the solution of Eq. (4.4b) consist of the boundary conditions (3.13) or (3.14) at

the impact end, the restraint conditions (3.15) at the elastic wave front, the continuity conditions (3.16) at

the front of plastic wave, and the supplementary restraint equation (4.12). By investigation, it is found

that only for the case a2
1 > 2 ~xx1 and 2 ~xx2 > a2

2, Eq. (4.4b) have the nontrivial solution satisfying the res-

traint conditions as mentioned above. The expressions of the solution are written in the following

forms:

Y1ðxÞ ¼ D1 cosðb1xÞ þ D2 sinðb1xÞ þ D3 cosðb2xÞ þ D4 sinðb2xÞ ð5:1Þ

Y2ðxÞ ¼ chðf1xÞ½d1 cosðf2xÞ þ d2 sinðf2xÞ� þ shðf1xÞ½d3 cosðf2xÞ þ d4 sinðf2xÞ� ð5:2Þ

In Eqs. (5.1) and (5.2), Di and di (i ¼ 1, 2, 3, 4) are integration constants. The parameters bi and 1i (i ¼ 1, 2)

are defined as

b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
a2
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4
1 � 4 ~xx2

1

q� �s
; b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
a2
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4
1 � 4 ~xx2

1

q� �s
ð5:3a; bÞ

a2
1 ¼ b2

1 þ b2
2; ~xx1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

1 þ c21k
q

¼ b1b2 ð5:4a; bÞ

f1 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~xx2 � a2

2

q
; f2 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~xx2 þ a2

2

q
; c21ð ~xx2

2 � w2
2Þ ¼ c22ð ~xx2

1 � w2
1Þ ð5:5a; b; cÞ

From Eq. (5.4b), the expression of the inertial exponential parameter x is written as

x
c0h

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12

Et

E
þ Eð1Þ

s

3E

 !
~xx2
1 � w2

1

� �vuut ð5:6Þ

5.2. Solutions of Eq. (4.4b) for buckling at the second stage of compression-wave propagation

At the instant t ¼ t3, as shown in Fig. 1(d), the plastic wave traveling forward from the impact end meets

the reflected plastic wave traveling backward from the reflecting end. For the dynamic buckling occurring

at the instant t ¼ t3, the conditions of determining the solution of Eq. (4.4b) consist of the boundary

conditions (3.13) or (3.14) at both ends of the shell, the continuity conditions (3.16) and the supplementary
restraint condition (4.13) at the plastic wave front.

For Eqs. (4.4b), the expression of the solution Y1ðxÞ is the same as Eq. (5.1), and Y2ðxÞ is of the same form

as Y1ðxÞ and written as

Y2ðxÞ ¼ d1 cosðn1xÞ þ d2 sinðn1xÞ þ d3 cosðn2xÞ þ d4 sinðn2xÞ ð5:7Þ

n1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
a2
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4
2 � 4 ~xx2

2

q� �s
; n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
a2
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4
2 � 4 ~xx2

2

q� �s
ð5:8a; bÞ

a2
2 ¼ n2

1 þ n2
2; ~xx2 ¼ n1n2 ð5:9a; bÞ
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5.3. Equations for the two characteristic parameters

Introducing the expressions (5.1) and (5.2) or the expressions (5.1) and (5.7) into the boundary condi-

tions, continuity conditions and supplementary restraint equation as mentioned above, we obtain nine
linear algebraic equations for the eight constants Di and di (i ¼ 1, 2, 3, 4). From the conditions of the

existence of nontrivial solution for these equations, we derive the two characteristic equations for the

parameters b1 and b2 as follows:

F1ðb1; b2; k; gÞ ¼ 0; F2ðb1; b2; k; gÞ ¼ 0 ð5:10a; bÞ

where the parameters b1 and b2 are related to the characteristic parameters a2
1 and x ¼

ffiffiffi
k

p
according to

Eqs. (5.3a,b) and (5.6). The parameters k and g are defined as

k ¼ rð1Þ
x0 =r

ð2Þ
x0 ; g ¼ c1t=ðL� c1tÞ ð5:11a; bÞ

After the values of the parameters b1 and b2 are obtained from Eqs. (5.10a,b), the critical-load parameter a2
1

and the inertial characteristic parameter k or x are calculated by use of Eqs. (5.4a,b) and (5.6). Dynamic

buckling modes are calculated by use of Eqs. (5.1) and (5.2) or (5.7).

6. Numerical results

By use of the theoretical method developed in Sections 1–5, we have investigated the axisymmetric

dynamic plastic buckling of three specimens in the experimental investigation reported by Florence and

Goodier (1968), which were investigated by Lepik (1999). In the experiment, specimens attached a large

rigid mass at one end were impacted against a rigid wall at another end. The serial numbers of the three
specimens are 1, 17 and 23 respectively, in the paper of Florence and Goodier (1968).

The specimens were made of aluminum-alloy 6061-T6. In our calculation, the elastic and hardening

moduli of the specimen material are taken as E ¼ 68:5 GPa and Et ¼ 0:02E respectively, which are the same

as those in the paper of Lepik (1999). The yield stress of the material is taken as rs ¼ 290 MPa, which is

approximately equal to the mean value of the yield stresses given in the papers of Florence and Goodier

(1968) and Lepik (1999). The geometrical parameters and experimental impact velocities of the three

specimens, given in the paper of Florence and Goodier (1968), are listed in Table 1.

6.1. Dynamic buckling at the first stage of compression-wave propagation

The first stage of axial-compression-wave propagation in shells has been defined in Section 2.1, as shown

in Fig. 1(c). From calculation, it is found that the initial buckling deformation occurs at this stage when the

impact velocities are equal to the values given in Table 1.

In calculation, we consider the two types of boundary conditions at the impact end, which are defined by

Eqs. (3.13a,b) and (3.14a,b) respectively. The boundary conditions Eq. (3.13a,b) are corresponding to the

case of zero rotation and zero transverse force at the impact end, that is, the case where in the process of

Table 1

Geometrical sizes and experimental impact velocities for the three models in the paper of Florence and Goodier (1968)

Model no. Thickness h (in.) Radius R (in.) Length L (in.) Experimental impact velocity v0 (ft/s)

1 0.095 0.5 3 332

17 0.100 0.5 4 395

23 0.095 0.5 6 310
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impact, the shell�s edge remains normal to the rigid wall and there is no friction between the rigid wall and

the impact end of the shell. In the following, the boundary conditions (3.13a,b) are simply written as ZRZF

boundary. At the first stage of wave propagation, Eqs. (3.14a,b) denotes the boundary conditions of simple

support at the impact end, which is simply written as SS boundary.
For the boundary ZRZF, two types of buckling deformation modes are obtained from calculation. With

the impact velocities given in Table 1, the two types of buckling modes for the specimens 1 and 17 are

plotted in Figs. 2–5. In Figs. 2–5, tcr denotes the critical buckling time, and Lcr ¼ c0tcr denotes the distance
that the elastic compression wave travels from the impact end at the instant t ¼ tcr. In the figures, r1 denotes

the axial compression stress in the plastic wave region and rs is the yield stress. Corresponding to the

impact velocities given in Table 1, the values of the ratio r1=rs are respectively 1.694, 1.825 and 1.620 for

the specimens 1, 17 and 23. Assuming that the buckling occurs at the instant t ¼ t1 ¼ L=c0, the first type of
buckling modes for the specimens 17 and 23 are plotted in Figs. 6 and 7, respectively. For this case, the
critical length Lcr is equal to the axial length of the shell. For the buckling at this instant, the values of the

ratio r1=rs are calculated and given in the figures, and the axial half-wave numbers of the buckling modes

are 8, 11 and 16 for the three specimens, respectively.

The variation of the critical buckling time tcr with the values of the ratio r1=rs is illustrated in Figs. 8 and

9 for the two types of buckling modes. From Figs. 8 and 9, it is obvious that the critical buckling time tcr
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Fig. 2. The first mode of the specimen 1 at the first stage for the boundary condition of zero rotation and zero transverse force at
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Fig. 3. The second mode of the specimen 1 at the first stage for the boundary condition of zero rotation and zero transverse force at

the impact end.
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decreases with the increment of the stress ratio r1=rs. The critical buckling time corresponding to the

second mode is longer than that for the first mode. Therefore, the dynamic buckling will occur with the first
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Fig. 4. The first mode of the specimen 17 at the first stage for the boundary condition of zero rotation and zero transverse force at the

impact end.
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Fig. 5. The second mode of the specimen 17 at the first stage for the boundary condition of zero rotation and zero transverse force

at the impact end.
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buckling occurs at the final instant of the first stage.
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mode. The variation of the values of the inertial exponential parameter x with ratio r1=rs is illustrated in

Figs. 10 and 11 for the first type of buckling modes. From Figs. 10 and 11, it can be seen that the value of
the parameter x increases with the increment of the stress ratio r1=rs.

For the boundary conditions of simple support (SS) at the impact end, the two types of buckling modes

are also obtained from calculation. Corresponding to the impact velocities given in Table 1, the two types of

buckling modes for the specimens 1 are plotted in Figs. 12 and 13. For the buckling that occurs at the

instant t ¼ t1 ¼ L=c0, the axial half-wave numbers of the buckling modes are given in Table 2 for the three

specimens, and the first type of buckling modes for the specimens 17 and 23 is shown in Figs. 14 and 15,

respectively. The variation of the critical buckling time tcr with the ratio r1=rs is shown in Fig. 16. The

variation of the inertial exponential parameter x with ratio r1=rs is plotted in Fig. 17. The comparisons of
the critical buckling time and the inertial exponential parameter corresponding to the two types of

boundary conditions are also give in Figs. 16 and 17. From Fig. 16, it can be seen that the values of the

critical buckling time tcr are close to each other for the two types of boundary conditions. The axial half-

Fig. 10. The value of characteristic parameter x corresponding to the first buckling mode under the boundary condition of zero

rotation and zero transverse force at the impact end (h ¼ 2:41 mm).
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Fig. 11. The value of characteristic parameter x corresponding to the first buckling mode under the boundary conditions of zero

rotation and zero transverse force at the impact end, for different thickness of shells.
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wave numbers of the buckling modes for the SS boundary conditions are the same as those for the ZRZF

boundary conditions.

6.2. Dynamic buckling at the second stage of compression-wave propagation

The second stage of the compression-wave propagation has been defined in Section 2.2. For this stage of
the compression-wave propagation, by use of the solution developed in Sections 1–5 we investigate the

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00
x/ L cr

w
/w

m
ax

σ1/σs=1.694, tcr=13.58ms,
L cr=67.79mm

Fig. 12. The first mode of the specimen 1 at the first stage for the boundary conditions of simple support at the impact end.
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Fig. 13. The second mode of the specimen 1 at the first stage for the boundary conditions of simple support at the impact end.

Table 2

The comparison of axial buckling half-wave numbers m for the three specimens

Model no. Experimenta The present solution Solution of

Florence and

Goodier

(1968)

Solution of

Lepik (1999)Buckling at instant t ¼ t1 Buckling at instant t ¼ t3

ZRZF boundary SS boundary ZRZF boundary SS boundary

1 8 8 8 8 8 10 10

17 11 11 11 11 13 13 13

23 15 16 16 15 18 21 19

a The experimental results from the paper of Florence and Goodier (1968).
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the final instant of the first stage.
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Fig. 15. The first mode of the specimen 23 for the boundary conditions of simple support at the impact end when buckling occurs at

the final instant of the first stage.
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Fig. 18. The buckling mode of the specimen 1 at the instant t ¼ t3 of the second stage for the boundary condition of simple support at
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Fig. 19. The buckling mode of the specimen 17 at the instant t ¼ t3 of the second stage for the boundary condition of simple support at

both ends (r1 ¼ 1:46rs).
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dynamic buckling of the three specimens, which occurs at the instant t ¼ t3. The value of t3 is given by Eq.

(2.7). At the instant t ¼ t3, the reflected wave front meets with the forward plastic wave N1, as shown in Fig.
1(d). Under the two types of restraint conditions ZRZF and SS at both ends of shells, the lowest stress ratio

r1=rs that causes dynamic buckling and the corresponding deformation modes are calculated and shown in

Figs. 18–21 for the three specimens. The axial half-wave numbers of the buckling modes are listed in Table

2. For the higher values of the stress ratio r1=rs, more axial half-wave numbers are obtained.

7. Conclusion

The axial critical stress and the exponential parameter of inertia terms in stability equations are treated

as a couple of characteristic parameters in the present investigation on the plastic dynamic buckling of

cylindrical shells under axial impact. The criterion of transformation and conservation of energy in the

process of buckling initiation is used to derive the supplementary restraint equation of buckling defor-

mation at the fronts of axial compression waves. A couple of characteristic equations for the two char-

acteristic are derived from the conditions on which the stability equations have nontrivial solutions
satisfying the boundary conditions, continuity conditions and the supplementary restraint equation. The
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Fig. 20. The buckling mode of the specimen 17 at the instant t ¼ t3 of the second stage for the boundary condition of zero rotation and

zero transverse force at both ends (r1 ¼ 1:36rs).
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Fig. 21. The buckling mode of the specimen 23 at the instant t ¼ t3 of the second stage for the boundary condition of zero rotation and

zero transverse force at both ends (r1 ¼ 1:33rs).
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critical axial stress or the critical buckling time, and the exponential parameter of inertia are quantitatively

calculated from the solutions of the characteristic equations.

When the axial stress resulting from impact is high, the initial buckling deformation of shells occurs in

the region close to the impact end at the initial stage of compression-wave propagation. As the value of the
stress ratio r1=rs increases, the critical buckling time tcr decreases and the value of the characteristic

parameter x increases. When the axial stress resulting from impact is low, the initial buckling deformation

of the shell may occur in the entire region of shells at the second stage of compression-wave propagation.
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